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Abstract

Urban traffic congestion is one of the most severe problems of everyday life in Metropolitan areas. In an

effort to deal with this problem, intelligent transportation systems (ITS) technologies have concentrated in

recent years on dealing with urban congestion. One of the most critical aspects of ITS success is the

provision of accurate real-time information and short-term predictions of traffic parameters such as traffic
volumes, travel speeds and occupancies. The present paper concentrates on developing flexible and ex-

plicitly multivariate time-series state space models using core urban area loop detector data. Using 3-min

volume measurements from urban arterial streets near downtown Athens, models were developed that feed

on data from upstream detectors to improve on the predictions of downstream locations. The results clearly

suggest that different model specifications are appropriate for different time periods of the day. Further, it

also appears that the use of multivariate state space models improves on the prediction accuracy over

univariate time series ones.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Urban traffic congestion is a problem that adversely and significantly affects all aspects of the
quality of life in, particularly larger, cities. As such, it comes as little surprise that intelligent
transportation systems (ITS) technologies make a conscious effort toward dealing with congestion
in urban areas. Advanced traffic control technologies may lead to more efficient use of existing
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road network systems resulting in reduced traffic congestion, delays, emissions, energy con-
sumption and improved safety. The success of these strategies depends, to a large extent, on the
quality and accuracy of the information given to the drivers. ITS technologies, with advanced
traveler information systems (ATIS), travel advisories, variable message signs (VMS) and others,
attempt to relieve congestion and decrease travel time by assisting drivers on selecting routes,
departure times, and even mode of travel.
For the above selection to be effective, accurate real-time information and short-term predic-

tions of traffic parameters such as traffic volumes, travel speeds, occupancies, etc., are needed. It is
also important to note that the short-term prediction of traffic parameters, occupancy in par-
ticular, could be used to predict travel times along pre-specified corridors; accurate provision of
predicted travel time information could be of paramount importance to commuters� travel mode
and route selection and to the success of ITS systems in general. Further, a key component of the
daily planning and operation of an urban area traffic control center is the optimal regulation of
road traffic on all types of streets; for this task, short-term forecasting of traffic parameters is
essential.
The need for, to the extent possible, accurate traffic parameter prediction has long been rec-

ognized in the international scientific literature. Since the early 1980s, researchers have used an
extensive variety of specifications to model traffic characteristics and produce short-term forecasts
(a review of many of the earlier methods used in short-term traffic flow prediction have been
reviewed in Van Arem et al., 1997). Specifications have ranged from Kalman filtering (Okutani
and Stephanedes, 1984; Whittaker et al., 1997), exponential filtering (Ross, 1982), nonparametric
statistical methods (Davis and Nihan, 1991; Smith et al., 2000), spectral and cross-spectral ana-
lyses (Stathopoulos and Karlaftis, 2001a,b) and sequential learning (Chen and Grant-Muller,
2001), to cusp catastrophe theory (Pushkar et al., 1995). Nevertheless, a large amount of literature
has been concerned with predictions from pure time-series models ranging from ARIMA to
dynamic generalized linear models (Chang and Miaou, 1999; Hamed et al., 1995; Lee and
Fambro, 1999; Lingras et al., 2000; Williams, 2001), and neural networks (Chang et al., 2000; Fu
and Rilett, 2000; Park et al., 1999; Park and Rilett, 1998; Rilett and Park, 1999; Smith and
Demetsky, 1994; Van Der Voort et al., 1996; Yasdi, 1999; Zhang, 2000; Zhang et al., 2000; Dia,
2001). Interestingly, Smith and Demetsky (1997) in a comparison of historical average, time-
series, neural network, and nonparametric regression models found that the nonparametric re-
gression model significantly outperformed the other models and was also easier to implement.
With few exceptions, previous work has been characterized by two important issues; first, data

used for model calibration and prediction has been, mostly, from (urban) freeways and, second,
models have been univariate in nature in that they use historical data from a given location to
predict its future behavior. But, with ITS�s potential applications and benefits in urban arterials

and streets, models to forecast short-term traffic in these conditions are needed. Further, the setup
of urban traffic data collection systems (regardless of whether the system is based on loops,
cameras, microwave systems or a combination) most frequently allows for the exploitation of
multivariate time-series techniques that may provide increased prediction accuracy.
From the discussion above it becomes clear that there is a need, both a practical and a theo-

retical one, to combine urban street data with multivariate techniques and examine the potential
for accurate flow predictions in the context of urban streets. As such, the goal of this paper is to
model and predict flow at an urban signalized arterial. To achieve this, data from an urban arterial
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street near the center of Athens, Greece, are used; these data are modeled using a flexible and
explicitly multivariate time-series methodology. The remainder of this paper is organized as fol-
lows. The Section 2 is a brief overview of the state space approach to time series modeling that
explicitly allows for jointly considering data from different detectors. Section 3 describes the data
collection process used in this study and Section 4 describes the model estimation process. Finally,
Section 5 summarizes the findings of the paper.

2. The state space approach to time series modeling

The historical background of the state space methodology is a long one. Its roots reach back to
the development of the Wiener filter and engineering state vector models. The early period of state
space models culminated with the invention of the Kalman filter by Kalman (1960). State space
models apply to multiple input–multiple output systems of stochastic variables which, unlike
other time series techniques such as ARIMA, do not require the variables to be stationary.
Further, as Harvey (1984) showed, using the state space estimation method produces equations of
nearly the same form for both stationary and nonstationary data.
Before proceeding with the theory, it is important to note that the ‘‘state space model’’ and the

more widely known ‘‘Kalman Filter model’’ refer to the same basic underlying theory. Generally,
the term state space refers to the model and the term Kalman filter refers to the estimation of the
state, as will be shown in the next paragraph. There are also few differences between ARMAX
models and the state space model. Most times, the process of estimating a state space models
begins by estimating its ARMAX equivalent in order to capture the statistically significant AR
and MA dimensions. Nevertheless, the state space approach has advantages over the more widely
used family of ARMA (ARIMA, ARMAX, etc.) models as Durbin (2000) notes: (i) it is based on
the analysis of the model structure and as such the various components that make up the series
(trend, seasonal variation, cycle, etc.) together with the effects of explanatory variables and in-
terventions are modeled separately before being integrated in the final model, (ii) it is very flexible
in that changes in the structure of the modeled system over time can be explicitly modeled, (iii)
multivariate observations can be handled as straightforward extensions of univariate theory
unlike ARIMA models, (iv) it is rather simple to deal with missing observations, (v) the
Markovian nature of state space models enables increasingly large models to be handled effec-
tively without disproportionate increases in computational efficiency and (vi) it is straightforward
to predict future values by projecting the Kalman filter forward into the future and obtaining their
estimated values and standard errors.
On the other hand, the mathematical theory of state space is quite complex. To understand it

fully on a mathematical level requires a good background in probability theory, matrix theory,
multivariate statistics and the theory of Hilbert space. But, the state space model is so useful,
especially for multivariate time series processes, that it deserves wider attention in the transpor-
tation literature. Here we note that much of the theory behind state space modeling is beyond the
scope of this paper and, as such, only the very essential parts of the formulation are discussed;
nevertheless, readers interested in the finer mathematical details of state space modeling should
refer to Shumway and Stoffer (2000), Durbin (2000), and Whittaker et al. (1997) for a trans-
portation application.
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The concept of the state of a system emerged from physical science. There the state consists of a
vector that includes all the information about the system that carries over into the future; that is,
the state vector consists of a linearly independent set of linear combinations from the past that are
correlated with future endogenous variables. To construct such a vector, the simplest and most
straightforward way is through the one-step predictor, then the two-step predictor, and so forth,
so long as the predictors extracted in this way are linearly independent. The set of predictors
extracted in this way are, by construction, a state vector. They contain all the relevant information
from the past, since all predictors of the future, for any time horizon, are linearly dependent upon
them. It is also a minimal set, since they are linearly independent. The space spanned by the se-
lected predictors is called the predictor space. The state space model for an r-variate (multivariate)
time series fyt; t ¼ 1; . . . ; ng is written

yt ¼ Mtxt þ Dzt þ ut;

xt ¼ Uxt�1 þ wt:
ð1Þ

These two equations are called the observation equation and the state equation respectively. xt, a p-
vector, is the (observed) state of the process at time t. The evolution of xt is governed by the state
equation: the state at time t evolves by autoregression on the previous state and is further modified
by the innovation term wt. The initial state x0 is taken to have mean l and nonsingular covariance
matrix R. The sequence fwt; t ¼ 1; . . . ; ng consists of independent and identically distributed
random p-vectors. The first s elements of wt have mean zero and nonsingular covariance matrix Q;
the last ðp � sÞ elements of wt are identically zero. The unobserved (latent) data vector, yt, is a
possibly time-dependent linear transformation of xt with the addition of a regression on the k-
vector zt of known exogenous regressors and observational noise modeled by ut. The sequence
fut; t ¼ 1; . . . ; ng consists of independent and identically distributed random r-vectors. The first m
elements of ut have mean zero and nonsingular covariance matrix R; the last ðr � mÞ elements of ut
are identically zero. Furthermore, ut and wt are mutually independent of each other and of x0 for
all t and t0.
Assuming that the random vectors x0, ut and wt have multivariate normal distributions, the log-

likelihood, given x0; x1; . . . ; xn, y1; . . . ; yn, z1; . . . ; zn, is, up to a constant,

log L ¼ � 1
2
log jRj � 1

2
ðx0 � lÞTR�1ðx0 � lÞ � 1

2
n log jQj

� 1
2

Xn

t¼1
ðxt � Uxt�1ÞTPTQ�1Pðxt � Uxt�1Þ �

1

2
n log jRj

� 1
2

Xn

t¼1
ðyt �Mtxt � DztÞTSTR�1Sðyt �Mxt � DztÞ: ð2Þ

The objective of the state space process is to find the set of l, U, D, Q and R that maximize logL.
The essential parameters of the traffic model to be developed consists of the following compo-
nents: an observed state vector xt that holds one variable per loop examined (traffic flow) and is
ordered by corresponding loop number, starting from L108 and moving to L12 (Fig. 1), and an
unobserved data vector, yt, that is a time-dependent linear transformation of xt with the addition
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of a vector zt of known exogenous regressors (such as roadway capacity, examined section length,
signalization plans, weather, etc.). 1 It should be noted that in the context of this study, the term
multivariate is used from a spatial standpoint (multiple detector locations) as opposed to a traffic
one (such as volume, speed and occupancy from a single detector).
Finally, the assumption of multivariate normality for the random vectors x0, ut and wt of Eq. (1)

was examined for the models developed. Of course, it should be noted that the investigation of
multivariate normality is not as straightforward as assessing univariate normality. It has proved
very difficult to construct a test for overall test of joint normality in more than two dimensions
because of the large number of things that can go wrong (Johnson and Wichern, 1992). One thing
that can be done is to check for the normality of each variable distribution. 2 In general, we could
not reject the null hypothesis of univariate normality for most of the variables. Having satisfied
multiple univariate normality, we proceeded as though multivariate normality conditions are met.

3. The collection of urban traffic data

3.1. Data source and analysis

Providing users with accurate information regarding travel time is considered to be an im-
portant element for travelers� route choice decisions, and can lead to an improvement in network
efficiency. Toward meeting the goal of reducing congestion, decreasing travel times, and giving
drivers the ability to make better route and departure time choices, a dynamic traffic map and
ATIS for the central Athens area has been operating since 1996 (NTUA, 1996). As a first attempt

Fig. 1. Layout of loop detector placement on the urban signalized arterial under study.

1 It is important to note that while in this application we only consider flow as the traffic parameter to be examined,

the state space models allows, by straightforward extension, to include more characteristics in the unobserved state

vector (such as occupancy, speed, etc.).
2 This is a necessary but not sufficient test for multivariate normality. In general, we recognize that marginal

univariate normality is not sufficient for joint normality. Nevertheless, as Stevens (1992) notes, for most practical work

one-dimensional investigations of normality are ordinarily sufficient. Further, data sets that are normal in lower

dimensional representations but non-normal in higher dimensions are very infrequent in practice (Johnson and

Wichern, 1992).
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to meet driver information needs, travel time information is given over the internet updated every
15 min. To do this, six origin points have been defined at the major city entrances, from which a
total of 17 possible (commonly used) routes have been considered. Speeds and travel times along
these 17 routes are being estimated using flow (volume) and occupancy data collected directly from
the controllers installed at 144 locations of the down-town urban network.

3.2. The data analyzed

In an effort to reduce the size of the data-set to be processed without losing much essential
information, a new data-set was created containing flow measurements for the period between
the 3rd of January 2000 and 31st of May, 2000. From previous analyses it has been shown
that while flows do not vary between weekdays, they vary significantly between weekdays and
weekends and for different time periods of the day (Stathopoulos and Karlaftis, 2001a). As
such, Saturday and Sunday data were excluded from further analysis; this yielded a data set
for 106 days containing 50 880 3-min flow observations to be used in the state space analysis.
Further, to make more practical sense of the results, and after preliminary testing indicated
this to be a statistically acceptable approach, data were further grouped into six separate time
periods (period 1: midnight–6:30 am, period 2: 6:30–10:00, period 3: 10:00–13:30, period 4:
13:30–17:00, period 5: 17:00–20:30, period 6: 20:30–midnight). As previously discussed, there
are 144 loop locations whose data are available for analysis. Obviously, it is impossible to
analyze the data for all detectors in this paper. To demonstrate the abilities of the chosen
methodology, five detectors were chosen for further analysis: loop detectors 108 (L108), 106
(L106), 103 (L103), 101 (L103), and 12 (L12); all five locations are along an important 3-lane
per direction signalized arterial on the periphery of the core area of the city (Alexandras
Avenue) and are sequential; that is, L12 is located downstream of (in order) L101, L103, L106,
L108 (Fig. 1). This sequential ordering of the loop detector placements yields a great oppor-
tunity to explore the modeling and prediction capabilities of the state space approach in a
multivariate setting.
Prior to model estimation, all signalized intersections of the chosen arterial were scrutinized for

traffic flow dependencies due to cyclic flow phenomena and platooning. In practice, the flow
profile during any single signalization cycle will vary from the average due to the random behavior
of individual vehicles. The profile of traffic entering a link will be displaced in time and modified
during the journey along the link due to the different speeds of the individual vehicles and, as a
result, platoons of vehicles will be partly dispersed. In order to test for this assumption, a sim-
ulation was conducted using actual signalization data for the entire corridor being studied.
Measures of the mean modulus of error (MME) were derived that helped in the assessment of how
far the profile of the arrival flow at the stopline deviates from the mean value. This measure is
expressed as a number in the range 0.0–2.0 (Vincent et al., 1980). A uniform flow has a MME of
0.0 while a high MME would indicate a link on which the flow was strongly bunched or pla-
tooned. The derived values for the sequence of intersections measured by loop detectors L108
through to L12 are 0.58, 0.72, 0.85, 0.61 and 0.84. These values indicate the relevant efficiency of
the existing signal coordination plans and, despite the existence of substantial inflows and out-
flows of traffic, the roadway retains a relative smooth operation suitable for flow estimation
testing and prediction.
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4. Model estimation

4.1. Preliminary investigation

As a first step in the model building process, we examined the traffic patterns for different days
for the various loop locations under consideration. Figs. 2–4 show the observed traffic volumes at
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Fig. 2. Observed traffic volumes for a typical 24-h period (Loop L12).
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Fig. 3. Observed traffic volumes for a typical 24-h period (Loop L101).
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Fig. 4. Observed traffic volumes for a typical 24-h period (Loop L108).
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three locations for a typical 24-h period. It is rather interesting to note that the general pattern is
very similar for detector locations L101 and L12 that are less than 250 m apart, and quite similar
even for detector locations such as L108 and L12 that are a distance of more than 2500 m apart.
This comparison reinforces the idea that a joint multivariate consideration of a number of de-
tectors may improve on both the modeling and prediction aspects.
Although, as noted in the Section 2, stationarity is not a requirement for state space models, we

tested for it in order to compare the results of the developed models with those from the ARIMA
approach. In general, a stationary time series has the same statistical behavior at each point in
time. Forecasts based on nonstationary series usually exhibit large errors, and as such series are
often differenced to obtain stationarity before the data can be analyzed. As can be seen from Fig.
5, the autocorrelation function (ACF) for L101 demonstrates considerably slow decay indicating
the lack of stationarity. Interestingly, using only first order differencing, results in an ACF and a
partial autocorrelation function (PACF) which tail-off exponentially (Fig. 6). Series whose ACF
and PACF both tail-off exponentially indicate a combined autoregressive-moving average (AR-
IMA) process (Shumway and Stoffer, 2000). Nevertheless, because of the importance of correct
differencing in the development of robust ARIMA models, we also tested for stationarity using
the augmented Dickey Fuller (ADF) test. 3 At the 99% significance level, we rejected the null
hypothesis of nonstationarity after first differencing was performed.
A further preliminary investigation was done to examine some of the basic autoregressive and

cross-correlation characteristics of the time series for the various loop locations (Stathopoulos
and Karlaftis, 2001b). The results showed that the series for all detector locations demonstrated
strong positive autocorrelation of lags 1–3, and variable cross-correlations that depended on the
time period of day examined. For example, the results showed that, when considering the pooled
data, L12 was strongly cross-correlated with lags 2 and 3 of L101, lags 5 and 6 of L103, lags 8 and
9 of L106, and lags 12 and 13 of L108. This investigation, which closely follows the geometry of
the test network, was the starting point for the development of the state space models presented in
the next subsection.

4.2. Parameter estimation

Based on the results of the preliminary investigation, state space models were developed for
both the pooled data (data from all time periods combined), and the data from the various periods
separately. Since Figs. 5 and 6 indicate the presence of both an autoregressive and a moving
average type process, the models developed ‘‘allowed’’ for an autoregressive and a moving average
order of up to three lags. This means that the initial model specifications contained both auto-
regressive and moving average terms of up to, and including, third-order lags. Of course, through
a thorough iterative search process for the ‘‘best’’ model specification, in terms of parameter

3 Several tests for nonstationarity (unit root tests) have been devised. Experiments conducted by Granger and Engle

(1984) indicate that the most satisfactory of these tests is the augmented Dickey Fuller test. In this test, the null

hypothesis is that the variable under consideration, say, is not stationary, i.e. it requires at least one differencing. The

alternative hypothesis is that the time series is already stationary. To test this hypothesis the following regression model

is estimated: ryt ¼ uyt�1 þ
Pp

j¼1 cjryt�1 þ et, where the number of terms p is the minimum required to render et into
white noise. The null hypothesis is that u ¼ 0.

128 A. Stathopoulos, M.G. Karlaftis / Transportation Research Part C 11 (2003) 121–135



0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Lag

C
o

rr
e

la
ti

o
n

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
lag

C
o

rr
e

la
ti

o
n

Fig. 5. Traffic volume autocorrelation and partial autocorrelation functions for L101.
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significance and predictive power, the final models comprise of a subset of the full specification.
The results presented in Table 1 show the order of the significant (95%) autoregressive lags; the
moving average part of the process is not presented, but the predictions obtained were based on
the full model specification (including the moving average term).
From Table 1 it can be seen that the ‘‘best’’ specification for the pooled data from L12 follow a

third order autoregressive-moving average process, while they are also significantly influenced
from data from L101, L103, L106 and L108 at varying, because of the distance between the
detector locations, lags. L101 in turn also follows an autoregressive-moving average process in-
fluenced by the data from the other locations except L12 (since we are examining flows from L101
to L12. The results for all locations appear in Table 1). Interestingly, while the pooled data
consistently demonstrate the process described, when the models for the separate periods of the

Table 1

Summary of the state space model autoregressive parameter order (Autoregressive Lags; All models include an MA(3)

term)

Predicted Order of parameter (lags)

L12 L101 L103 L106 L108

Location 12 Pooleda 1,2,3 2,3 5,6 8,9 12,13

Period 1 1,2,3 2,3 5 8,9 12,13

Period 2 1,2,3 – 6 8 12

Period 3 1,2,3 2 – 9 –

Period 4 1,2,3 3 6 – 13

Period 5 1,2,3 2,3 – 9 –

Period 6 1,2,3 2,3 6 9 12

Location 101 Pooleda 1,2,3 2,3 5,6 8,9

Period 1 1,2,3 2 5,6 8,9

Period 2 1,2,3 2,3 – –

Period 3 1,2,3 – –

Period 4 1,2,3 2 5 8,9

Period 5 1,2,3 2 6 –

Period 6 1,2,3 2 – 9

Location 103 Pooleda 1,2,3 2,3 5,6,7

Period 1 1,2,3 – 5,6

Period 2 1,2,3 – 7

Period 3 1,2,3 – 5

Period 4 1,2,3 3 –

Period 5 1,2,3 3 –

Period 6 1,2,3 2,3 5

Location 106 Pooleda 1,2,3 2,3

Period 1 1,2,3 2,3

Period 2 1,2,3 2

Period 3 1,2,3 2,3

Period 4 1,2,3 2

Period 5 1,2,3 2

Period 6 1,2,3 2
a Pooled: data from all periods (1–6) combined.
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day were examined, the significant cross-correlation lags varied; this is a very interesting finding
that can be mainly attributed to the difference in the underlying traffic and OD patterns during the
different time periods of the day. Interestingly, the state space model for period 3 of L101 ‘‘col-
lapsed’’ to an ARIMA (3,3) process. This implies that one of the most important strengths of the
state space approach is its ability to model a wide variety of time series processes which may vary
from a rather complicated mixed ARIMA and cross-correlation process to a simpler ARIMA or
AR model. Finally, since L108 was considered as the ‘‘entry’’ point for the area examined we only
considered the ARIMA (3,3) process as appropriate.

4.3. Predictions

As already mentioned, the main purpose of the state space model developed was to obtain
short-term traffic volume predictions for the corridor examined. To obtain predictions, the
original data set was split into two distinct subsets: the model development and the testing subsets;
the first contained roughly 70% of the observations and the second the remaining 30% (to obtain
this split we followed the more general rule-of-thumb that 2/3 of the data should be used for
estimation and 1/3 for testing). Once a model was developed using the data from the first set,
forecasts were generated and were then compared to the actual values from the testing set
(technically this means that the predictions presented here are not in-sample; that is, different sets
were used for estimation and testing. This approach yields inferior fit but more realistic forecasts
than if the same data were used for both steps).
Fig. 7 presents a comparison of the predictions obtained from the state space model with those

of the ARIMA model for each detector location. The predictions for L108 are the same since, as
previously discussed, the state space model ‘‘collapsed’’ into an ARIMA model. It is clear that the
predictions obtained from the state space models are superior to those obtained from the ARIMA
models; the highest difference was demonstrated for the distant L12 where the state space model
yields a mean absolute percent error (MAPE) of 12% compared to a 20% MAPE value from the
ARIMA model, possibly due to the accumulated gain in traffic volume information from the
previous detector locations. The differences in the models for the other detectors are important,
but not as large. Interestingly, a series of t-tests indicated statistically significant differences be-
tween the prediction results obtained with the two methods for detectors L103, L101 and L12, and
statistically no significant difference for L106.
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Fig. 7. Mean absolute error rate comparison between ARIMA and state space models.
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Finally, Fig. 8 presents a comparison of MAPE values for the different detectors examined per
time period. The MAPE values are quite similar, and statistically not significantly different, for the
different time periods within detectors, with the exception of the first period (midnight–6:30 am),
were MAPE values are relatively higher. As a final note, it should be mentioned that the MAPE
values reported here are rather high when compared to values reported in other studies. This is,
most probably, a reflection of the data available and the context of this study rather than a re-
flection of the methodology. It appears that, despite its potential usefulness, traffic flow in sig-
nalized urban arterials cannot be predicted, at least in the short-run, with as much accuracy as
flow in urban freeways. This, of course, presents many methodological and model development
challenges that need to be addressed in the future.

4.4. A caveat

In the study of traffic the problem is often one of locating queues, and thus bottlenecks in the
transportation system. In detectorized networks, measurements of occupancy (the fraction of time
vehicles are over a detector) are used to assess the concentration of traffic along roadways, a
measurement that indicates the onset of congestion. The joint observation of actual traffic counts
and occupancies over a link of the signalized roadway is shown in Fig. 9. The apparent trend of
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Fig. 8. Mean absolute percent error rate comparison for different time periods from the state space model.
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Fig. 9. Joint observations of actual traffic counts and occupancies over a link of the signalized roadway examined.

132 A. Stathopoulos, M.G. Karlaftis / Transportation Research Part C 11 (2003) 121–135



the scatter diagram is characteristic of the volume–occupancy relationship and encompasses many
observed traffic regimes. Counts were aggregated over 15 min intervals to decrease the fluctuations
of the scatter diagram. Observation fluctuate about the ‘‘optimum’’ link flow indicating that the
accuracy of traffic predictions discussed in this paper could be improved by jointly examining
traffic volumes and occupancies. This discussion also suggests that extreme values (of either
volume or concentration) could be better analyzed in a meaningful traffic engineering way.

5. Conclusions

It is widely accepted that ITS technologies may lead to more efficient use of existing road
network systems resulting in reduced traffic congestion, delays, emissions, energy consumption
and improved safety. The success of these strategies depends on short-term traffic prediction for
parameters such as traffic volumes, travel speeds and occupancy. The field of short-term pre-
diction of traffic characteristics has attracted considerable interest in the literature that, with few
exceptions, has been characterized by the univariate examination of freeway data. The present
paper took a somewhat different approach to examining traffic volume data.
First, 3 min data from urban arterials streets near downtown Athens were used to estimate

explicitly multivariate time series models. The models developed fall in the flexible family of state
space approaches. Among the important advantages of this approach are both their explicit
multivariate nature, which allows for data from different loop detectors to be jointly considered,
and their ability to model a wide variety of univariate models, such as ARIMA, as special cases.
Indeed, in some of the cases examined, the best fit was provided by ARIMA models that turn out
to be quite useful especially for points of entry into the study area. The results of the models
developed clearly suggest that, at least in the case of Athens, different specifications are appro-
priate for different time periods. Further, it also appears that the use of multivariate state space
models holds promise in the urban roadway system.
It should be noted that the multivariate modeling of flow, speed and occupancy data in urban

areas is a fairly complex and tedious process. Data from different detectors are not only highly
correlated among themselves but are also related to prevailing traffic conditions which tend to
exhibit high short-term fluctuation. In addition, during large parts of the day, traffic is highly
congested, approaching unstable conditions. At such conditions the usual statistical modeling
procedures may suffer from an inherent inability to describe traffic characteristics and as a result
produce accurate short-term predictions. It is deemed necessary to develop new approaches with
the ability to capture traffic behavior at their boundary conditions.
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